

Improving your Agile Continuous Integration Build Process

A technical whitepaper demonstrating the benefits of using Openmake Meister in agile
development.

Agile Development and Openmake Meister Page 2 of 13

Table of Contents

IMPROVING YOUR CONTINUOUS INTEGRATION BUILD PROCESS.................................. 1

PROBLEMS WITH SCRIPTED BUILDS IN AGILE DEVELOPMENT 3

BUILD INTEGRATIONS BETWEEN THE INDIVIDUAL IDE BUILD AND THE TEAM CI
BUILD ... 5

IMPROVED CI BUILD SPEEDS THROUGH BUILD AVOIDANCE .. 6

COMMUNITY DEVELOPED BUILD KNOWLEDGE BASE – ELIMINATING REDUNDANCY 7
Compiler Setting – Think Global Work Local... 7
Online Collaboration of Object Directories ... 8
Bulletproofing Dependency Management ... 9
Dynamic Continuous Build Scripts ... 10

ADAPTIVE CODE AND PACKAGE REFACTORING USING MEISTER 11

BUILD WORKFLOW MANAGEMENT.. 12

CONCLUSION .. 13

COMPANY OVERVIEW .. 13

Agile Development and Openmake Meister Page 3 of 13

Problems with Scripted Builds in Agile Development

The heart of

agile
development
is a

continuous
build.

Meister

supports
agile

development
by providing

adaptive and
dynamic
build

services.

Agile development implies an iterative development methodology. The basic concept
is that you build and deploy applications quickly and on a frequent basis. These mini,
iterative releases allow for each developer's coding change to be compiled into a
complete application on a continuous basis. The benefits include identifying early
problems due to source code branches, deviations in shared components as well as
end enabling testing and review by end users.

At the heart of an agile development process are continuous builds. The purpose of a
continuous build process is to assemble the application as a complete unit, integrating
source code changes as soon as possible. For this reason, builds are executed
continuously on a remote machine and initiated when new source code modules have
been committed to the shared source repository.

Because agile development results in an application that is changing at a rapid pace,
the need to update and maintain redundant manual build scripts becomes a core part
of the agile process. The problem is clear; the agile development process is highly
adaptive and dynamic. However, the heart of the agile process, the continuous build,
relies on manual redundant build scripting.

Build scripts are static documents that are snapshots of an application at a single
point in time

Because they are manually written there is redundancy within the scripts themselves.
A single team member called the "Build Meister" is responsible for managing the
continuous build. Developers copy scripts between themselves and edit the scripts to
reflect their unique requirements. The Build Meister will create and maintain one large
script that calls each sub script sequentially or will write a single script to handle the
build of the entire application. Redundancy is found at multiple layers. Each developer
may maintain a script as well as the Build Meister. This scripted process was born
from the waterfall approach to application development and does not retrofit well into
agile development.

Build scripting is not adaptive or self documenting

When a developer updates or fixes a script, the Build Meister must discover that a
change in a script has occurred to ensure that it is incorporated into the continuous
build. In addition, when the build breaks due to a scripting error, fixing one script may
not fix the build as the script may have been copied and used by other developers. A
build break may mean re-visiting many scripts in order to completely fix the problem.
Removing the redundancy between the scripts minimizes broken builds and useless

Agile Development and Openmake Meister Page 4 of 13

script coding. A community driven continuous build does not need to rely on repetitive
manual scripting. This whitepaper will explain how Openmake Meister better supports
the needs of agile developers by automating many aspects of the build process that
would otherwise be manual.

This whitepaper describes how Openmake Meister:

• Performs build integrations between the individual IDE build and the team CI build.

• Speeds up builds using Build Avoidance

• Supports a community developed knowledge base for eliminating redundant tasks.

• Creates an adaptive code re-factoring process outside of the IDE

• Automates and manages on demand, continuous or scheduled builds

Agile Development and Openmake Meister Page 5 of 13

Build integrations between the Individual IDE Build and the Team CI Build

Meister
synchronizes
the IDE and

CI builds for
continuous,

non-stop
build
processing.

 IDEs allow developers to make rapid changes to source code. While coding,
developers use their IDEs, such as Eclipse and Visual Studio, to point and click their
way through the process of calling build engines to assemble their code into binaries.
However, as they integrate their code with the other developers, they must leave the
comfort of the IDE and move to a "command line" build process outside of the IDE.
To do this they must manually create build scripts to call the IDE build engines in an
attempt to repeat or mimic the build that was performed by the IDE.

In today's fast changing development environment where agile methodologies and
continuous integration encourages change, this static, non adaptable build process
has problems. First, agile developers update source code rapidly inside the IDE, but
the static build scripts that exist outside the IDE have no reference to the changes
made within the IDE. The build scripts themselves represent what the source code
looked like at a particular point in time and become immediately out of date as
source code quickly changes. A simple code refactoring within the IDE can cause a
major re-write of the supporting static scripts. Secondly, as applications grow and
complexity, the ability to manually define how the code should be assembled
becomes more and more complex. For these reasons, an automated process that
connects the development IDE automatically to the build scripts is necessary for
keeping the build scripts themselves up to date. This automation allows developers
to meet the demands and tight release schedules more quickly they face each day,
without being bogged down by manual scripting.

OpenMake Meister solves these problems by mashing up the individual developer's
IDE build with the builds executed outside the IDE. Meister uses innovative Build
Services in conjunction with the IDE project file to generate the build scripts and to
mash-up the IDE build with the CI build - automatically. Meister's Build Services are
templates that are completely customizable and can be written to support any
development requirement. The Meister community developed knowledge base
includes standard templates that have been written and shared by the Openmake
Meister User community.

Because Meister manages the build engines, such as MSBuild and Ant, it can also
tightly manage what is occurring in the build process itself. This includes what is
called Build Forensics where each artifact used in the build is logged, even when the
artifact is not managed by a source code control tool. Build Forensics provides the
most detailed build auditing possible, providing developer's complete transparency
as to what source code and libraries were used for any one build. This same Build
Forensics is also used during the build to support Build Avoidance, meaning that
when a build executes, objects that are up to date or not rebuilt, providing the fastest
build speeds possible.

Agile Development and Openmake Meister Page 6 of 13

Improved CI Build Speeds through Build Avoidance

Meister
knows what
to build, and

when to
build it.

10 minute
builds are

possible
with
Meister.

Improving the speed of builds increases the number of CI builds that can be
performed during a single day. With applications growing in size and complexity,
build times are increasing as well. Builds that run for 2-3 hours are no longer
unusual. In fact, some builds run well beyond the 2-3 hour norm.

If your working in a continuous integration build environment, you need your builds to
execute on an iterative basis, knowing what to build and when to build it. If objects
are up to date, then they should not be rebuilt. This is what we call build avoidance.

Meister supports a build process that is as iterative as your agile source code
development process. Using an innovative technology that performs deep
dependency discovery and build forensics, Meister can accurately re-build an
application without the need for rebuilding all components each time. This means
that a build that normally takes 2-3 hours to build can be reduced to just a few
minutes.

By allowing developers to execute CI build using build avoidance, the build process
becomes as agile as the source code development process. Developers can make
updates to source code and compile them immediately against the CI build.

Agile Development and Openmake Meister Page 7 of 13

Community Developed Build Knowledge Base – Eliminating Redundancy

Meister
eliminates
the

redundancies
commonly

found in
build
scripting.

Meister

allows
everyone the

ability to
address build
problems as

needed to
ensure that

the
continuous

build does
not break.

 Agile developers can eliminate build script redundancy using a community
developed build knowledge base. Using a centralized knowledge base provides a
many to many communications process that eliminates the redundancies commonly
found in build scripting.

The three most redundant components of a build scripts are:

• compile flags/parameters

• directory locations

• source code dependencies

A change in any of these three components can require that each script be revisited.
When these components are not carefully orchestrated between scripts, the result is
an inconsistent continuous build. An inconsistent build is a serious problem for the
agile development process, as the continuous build represents the heartbeat of agile
development.

Compiler Setting – Think Global Work Local

Compiler flags and parameters are normally coded as part of a build script and are
referenced in multiple locations within each script. The problem with this ad hoc
scripted method is that it requires visiting each script to understand what flags are
used and how they are defined. A better method is to eliminate the redundancy
within the scripts and store this build metadata in a centralized location. This allows
everyone on the team the ability to understand the build configuration, address the
problems as needed and ensure that the continuous build does not break.

Meister creates this "think global but act local" environment by managing and
exposing the critical compile information outside of the script. Using Meister,
developers can quickly review the globally used compile parameters and determine if
their local change may result in an incompatible parameter that may cause a
dependent object to break. Developers can manage their local parameters with the
full understanding of what is needed to create the application overall. Viewing and
updating compile parameters with Meister is as simple as generating a report or
using the Meister interface to access the knowledge base data. Figure 1 shows a
sample report that reveals the global compile parameters for the "Java" Meister Build
Types.

Agile Development and Openmake Meister Page 8 of 13

Figure 1 – Java Compile Parameters

Meister
provides an
easy way for

agile
developers

to stay in
sync.

 Coordinating the use of compile parameters creates a build process that is as
iterative as your development process.

Online Collaboration of Object Directories

Agile developers make the best use of shared technology. From the use of SOA
objects or SOA dependencies such as AXIS (Apache SOAP Communication) agile
developers understand the importance of developing their applications on a common
framework. What is often overlooked is that the development versions of the 3rd party
objects must match what is running in production, otherwise a production release will
fail. For this reason, it is important to eliminate the redundant references to the
location of these objects.

In Java development most of these objects are found via the CLASSPATH definition
set for each developer machine. For SOA development, WSDL (Web Services
Definition Language) definition files, used to generate source class files that define
the transaction services that interact with the database, are found in local or shared
directories referenced explicitly in scripts or defined inside of an IDE.

Challenges in managing object directories are not completely obvious. First, the
CLASSPATH can be defined in as many as three different locations for each
developer The definition can be set at the machine level as an environment variable,
via an IDE such as Eclipse or hard coded inside the Ant script itself. Because of the
redundant ways the CLASSPATH can be defined, it is very difficult to ensure that the
CLASSPATH definition is the same for all developers.

As for the use of objects such as those created by SOA WSDL, each developer
points to a directory that contains the versions of these WSDL generated source
class files via the IDE or within their script. Similar to the CLASSPATH setting, it can
be difficult to ensure that each developer points to the correct directory, and in some
cases, this may not be possible as each developer updates the WSDL as required.

Meister provides an easy way for the agile development team to stay in sync by
removing the redundant references to the CLASSPATH and WSDL source

Agile Development and Openmake Meister Page 9 of 13

Meister
supports a
pro-active

process for
resolving

build issues
before they
occur.

The holy
grail of build

management
is

dependency
gathering.

directories. Meister creates a central on-line environment for defining the
CLASSPATH and WSDL directory locations. For developers using the Meister IDE
plug-in, their build will automatically use the centrally defined CLASSPATH and
shared object directories. It will also allow them to reference first their private
directories if they themselves are creating new objects that are eventually to be
included as shared objects. When the automated continuous build is executed, the
same process is repeated ensuring that the exact objects that were used in the local
build are used in the global build.

This centralized, community developed process of defining the directory locations of
shared objects eliminates build problems that are found when developers use many
definitions stored in multiple locations. Meister further supports this pro-active
process of resolving build issues before they arise through the process of gathering
and reporting on the build dependencies themselves.

Bulletproofing Dependency Management

The holy grail of any solid build process is the ability to quickly resolve the exact
objects that went into the build. The ability to perform accurate dependency analysis
is claimed by many Source Code Management (SCM) and build tools. However, the
only proper way to perform dependency analysis is through code scanning and
compiler "listening". Traditionally, dependency management was done manually with
the "Build Meister" coding both high level (.c) and low level, embedded (.h)
dependencies into the make script. Programs such as "make depend" provided
some help by scanning the source code and automatically generating the low level
portions of the make file. As make became replaced by Ant, Build Meisters either
explicitly coded the dependencies or chose to use wild cards (*.class), to replace the
manual effort of hard coding the dependencies.

Build processes which include an interface to SCM solutions can generate a "bill of
material" reports that list all the files that were checked out of the SCM tool, or were
residing in the directory where the build actually occurred. This process is a "best
guess" method as there is no way of actually knowing if the files checked out or
residing in the local build directory were actually used by the compiler. The build
script itself often defines the directories to be used in the build with no reference to
what is actually stored in the SCM tool.

Some dependency gathering solutions attempt to solve the dependency gathering
process by providing "listeners" that work at the file system level. These listeners
watch to see what files have been opened during the build and are far better than a
simple check-out "bill of material" report. The problem with these listeners is that they
work only on a virtual file system. This means that in order to get an accurate listing
of dependencies the agile development team needs to have all of their directories
managed by a virtual file system. If a directory is included in the build, but not
managed by the virtual file system, the dependency is left unexposed.

Agile Development and Openmake Meister Page 10 of 13

The magic

behind
Meister is its

reusable,
adaptive

scripts.

Meister's

build
services
create the

adaptability
needed to

support a
quickly
changing

agile
development

process.

Meister solves this problem in two ways. First, Meister goes back to a more
traditional approach like "make depend". Regardless of the development language,
Meister performs file scanning, mining a dependency list at the lowest level.
Secondly, because Meister does not rely on ant or make scripts to actually perform
the build, it has the added benefit of being able to watch the compiler activity and
confirm what files are being used to assemble the final objects, even when the files
do not reside in an SCM repository or on a virtual file system. This level of
dependency scanning gives you a complete and 100% accurate picture of all the
dependencies used to create the deployable objects. This information can be linked
into the binary as a footprint, or viewed in an online report that can be checked into
your SCM tool along with the production ready binaries.

Dynamic Continuous Build Scripts

The magic behind Meister is its reusable, adaptive scripting delivered through Build
Methods and Build Services. In addition to Meister's community developed
knowledge base for the management of build meta data, Meister provides the
framework for agile developers to reuse build scripts. These reusable build scripts
are generated based on standard templates and the build meta data that is stored in
the knowledge base. Once generated, the script can be executed across the
enterprise on any machine, on demand, scheduled or continuous.

Writing and maintaining non-reusable build scripts is a redundant and non-adaptive
process. An update to a local script does not equate to an update to the global script.
Finding and fixing a problem in a single script that had been copied and used by
another developer means that each copied script must be re-visited.

Meister's build services eliminate script redundancy by allowing you to write a script
once, for a particular type of compile, and reuse it for every build for that compile
type. Meister uses the reusable script to generate what would normally be coded
using Ant/XML or Make. This means that a correction in the global script results in a
correction to the local script. In addition, Meister uses the community developed
knowledge base to include in the generated script the correct compile flags, override
compile flags as defined by each developer and the community shared source code
directory locations. The reusable PERL provided by Meister supports this build
reuse. The reusable PERL modules can be written for any type of compile or build
action. Meister's build services create the adaptability needed to support a quickly
changing agile development process.

Agile Development and Openmake Meister Page 11 of 13

Adaptive Code and Package Refactoring using Meister

Meister

simplifies
code re-

factoring
via its IDE
plug-ins.

 Changing a package or moving classes between packages is referred to as code or
package re-factoring. When this is done through an IDE such as Eclipse, the moving
and renaming of all objects is performed for you. However, when building outside of
the IDE, the build scripts still reference the old package structure. If the build script is
written using wild cards, this problem is minimized. However, using wild cards
increases the potential of using obsolete or incorrect java source. For this reason,
many agile teams use wild cards at a lower package level to produce a more precise
build result; therefore package and code re-factoring must be dealt with at the
build.xml level. Re-factoring a build.xml file requires that the build.xml script be
edited and updated manually by each developer and the Build Meister with the new
package structure. This process is far from the dynamic adaptive methods for which
the agile developer strives.

When a developer is using Meister's adaptive script generation, once the re-factoring
has been completed inside the IDE, the developer simply uses the Meister plug-in to
update the build meta data that results in a new build.xml. This is done dynamically
without the need to manually visit any ad hoc Ant/XML scripts.

Agile Development and Openmake Meister Page 12 of 13

Build Workflow Management

Meister
provides full

automated
build
management

to support
an infinite

number of
ways to
execute the

build
workflow.

 Builds incorporate many tasks and steps. Even though the core of the build is
compiling and assembling the binaries themselves, there are other pre and post
tasks that need to be incorporated in a continuous or team level build. In addition,
these "build workflows" need to execute on multiple machines, coordinating machine
hardware and resources, calling on other lifecycle tools such as source code control,
testing and deployment.

In addition to executing steps that surround the build, builds are launched in different
ways. For example, builds are executed on a shared location and are performed
continuously with a build listener executing a build when fresh code has been added
to the shared location. Builds of course are executed on demand at the local
developer level and finally builds are scheduled to run at different times of the day on
dedicated build machines.

These options and process, how the build is launched, what machines are used and
the workflow of the individual build steps, are often referred to as build management.
This level of control offers the benefit of centralizing the activities around the build
and provides a single location to report on the success or failure of the build.
Cooperation between development, testing and production release is simplified as all
team members go to one location for the unique answers they need.

Meister provides full automated build management to support an infinite number of
ways to execute the build workflow. Meister supports remote builds and remote build
workflows with scheduling capabilities. In addition, these workflows are developed
through Meister's community developed knowledge base. Developers can define
build workflows and can share them across the team as 'Public' workflows.

The build workflows themselves can be coordinated and managed by chaining the
steps and defining dependencies between the steps. And for developers who must
rely on manually developed Ant or Make scripts, Meister will execute the scripts
providing bill of material reporting, build difference reporting and build performance
reporting.

From continuous build support to a production level build workflow executing across
multiple remote machines, Meister provides the tools necessary to manage build
automation from start to finish.

Agile Development and Openmake Meister Page 13 of 13

Conclusion

Meister
offers agile

developers
maximum
protection

from failed
builds and

releases by
providing
improved

traceability
and

adaptability.

 Meister provides build services that allow a dynamic and adaptive method for
managing builds from the most detailed level of compile management to the broader
Application Lifecycle workflow requirements. Through its build services, Meister
eliminates the redundancies normally found in ad hoc scripting. For developers who
are working within agile methodologies, Meister's community-developed
knowledgebase provides reusable templates which are sustainable roadmaps for the
software build challenge; without relying on static, homegrown scripts. Meister offers
agile developers maximum protection from failed builds and releases by providing
improved traceability, adaptability, impact analysis and audit control. In summary,
Meister improves software quality and speed by leveraging reuse and consistency in
the build-to-release process.

For more information, visit us at www.openmakesoftware.com or reach out to us at
request-info@openmakesoftware.com

Company Overview
OpenMake Software started the evolution of builds in 1995, serving mainly the financial
community with the mission of delivering a 100% insulated build process that were also fast.
The OpenMake Software team understood the ins and outs of software compiles and links,
and how easily a build could be the bottleneck of the software delivery process and be easily
compromised on accident or on purpose. With this mission in mind, OpenMake Meister was
created and has been serving large enterprises for over 25 years, the longest serving solution
in the DevOps ecosystem. Meister has been sold and distributed by Broadcom for over 20
years.

http://www.openmakesoftware.com/

